The splicing-factor related protein SFPQ/PSF interacts with RAD51D and is necessary for homology-directed repair and sister chromatid cohesion
نویسندگان
چکیده
DNA double-stranded breaks (DSBs) are among the most severe forms of DNA damage and responsible for chromosomal translocations that may lead to gene fusions. The RAD51 family plays an integral role in preserving genome stability by homology directed repair of DSBs. From a proteomics screen, we recently identified SFPQ/PSF as an interacting partner with the RAD51 paralogs, RAD51D, RAD51C and XRCC2. Initially discovered as a potential RNA splicing factor, SFPQ was later shown to have homologous recombination and non-homologous end joining related activities and also to bind and modulate the function of RAD51. Here, we demonstrate that SFPQ interacts directly with RAD51D and that deficiency of both proteins confers a severe loss of cell viability, indicating a synthetic lethal relationship. Surprisingly, deficiency of SFPQ alone also leads to sister chromatid cohesion defects and chromosome instability. In addition, SFPQ was demonstrated to mediate homology directed DNA repair and DNA damage response resulting from DNA crosslinking agents, alkylating agents and camptothecin. Taken together, these data indicate that SFPQ association with the RAD51 protein complex is essential for homologous recombination repair of DNA damage and maintaining genome integrity.
منابع مشابه
TRAP150 interacts with the RNA-binding domain of PSF and antagonizes splicing of numerous PSF-target genes in T cells
PSF (a.k.a. SFPQ) is a ubiquitously expressed, essential nuclear protein with important roles in DNA damage repair and RNA biogenesis. In stimulated T cells, PSF binds to and suppresses the inclusion of CD45 exon 4 in the final mRNA; however, in resting cells, TRAP150 binds PSF and prevents access to the CD45 RNA, though the mechanism for this inhibition has remained unclear. Here, we show that...
متن کاملScientific Report UBL5 is essential for pre-mRNA splicing and sister chromatid cohesion in human cells
UBL5 is an atypical ubiquitin-like protein, whose function in metazoans remains largely unexplored. We show that UBL5 is required for sister chromatid cohesion maintenance in human cells. UBL5 primarily associates with spliceosomal proteins, and UBL5 depletion decreases pre-mRNA splicing efficiency, leading to globally enhanced intron retention. Defective sister chromatid cohesion is a general ...
متن کاملFunctional genomics identifies a requirement of pre-mRNA splicing factors for sister chromatid cohesion
Sister chromatid cohesion mediated by the cohesin complex is essential for chromosome segregation during cell division. Using functional genomic screening, we identify a set of 26 pre-mRNA splicing factors that are required for sister chromatid cohesion in human cells. Loss of spliceosome subunits increases the dissociation rate of cohesin from chromatin and abrogates cohesion after DNA replica...
متن کاملMammalian Rad51C contributes to DNA cross-link resistance, sister chromatid cohesion and genomic stability.
The eukaryotic Rad51 protein is a structural and functional homolog of Escherichia coli RecA with a role in DNA repair and genetic recombination. Five paralogs of Rad51 have been identified in vertebrates, Rad51B, Rad51C, Rad51D, Xrcc2 and Xrcc3, which are also implicated in recombination and genome stability. Here, we identify a mammalian cell mutant in Rad51C. We show that the Chinese hamster...
متن کاملSaccharomyces cerevisiae DNA Polymerase ε and Polymerase Interact Physically and Functionally, Suggesting a Role for Polymerase ε in Sister Chromatid Cohesion
The large subunit of Saccharomyces cerevisiae DNA polymerase , Pol2, comprises two essential functions. The N terminus has essential DNA polymerase activity. The C terminus is also essential, but its function is unknown. We report here that the C-terminal domain of Pol2 interacts with polymerase (Pol ), a recently identified, essential nuclear nucleotidyl transferase encoded by two redundant ge...
متن کامل